add dockerfile
separated code
هذا الالتزام موجود في:
6
.dockerignore
Normal file
6
.dockerignore
Normal file
@@ -0,0 +1,6 @@
|
||||
__pycache__
|
||||
.venv
|
||||
.vscode
|
||||
.dockerignore
|
||||
.env
|
||||
jobs.csv
|
3
.gitignore
مباع
3
.gitignore
مباع
@@ -2,4 +2,5 @@ jobs.csv
|
||||
.venv
|
||||
__pycache__
|
||||
.env
|
||||
.vscode
|
||||
.vscode
|
||||
.env2
|
11
Dockerfile
Normal file
11
Dockerfile
Normal file
@@ -0,0 +1,11 @@
|
||||
FROM python:3.12.3-slim
|
||||
|
||||
WORKDIR /jobfitai
|
||||
|
||||
COPY requirements.txt .
|
||||
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
COPY . .
|
||||
|
||||
CMD [ "python3", "main.py"]
|
3
ai.py
3
ai.py
@@ -1,12 +1,9 @@
|
||||
# To run this code you need to install the following dependencies:
|
||||
# pip install google-genai
|
||||
|
||||
import base64
|
||||
import os
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
|
||||
|
||||
def generate(description, instruction, api_key):
|
||||
client = genai.Client(api_key=api_key)
|
||||
|
||||
|
93
filter.py
Normal file
93
filter.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import logging
|
||||
import time
|
||||
from ai import generate
|
||||
import json
|
||||
from google.genai.errors import ServerError, ClientError
|
||||
|
||||
total_fail = 0
|
||||
total_overload = 0
|
||||
total_fail_overload = 0
|
||||
total_empty_response = 0
|
||||
total_fail_empty_response = 0
|
||||
|
||||
|
||||
def filter_jobs(jobs, cv, api_keys, good_fit_jobs):
|
||||
key_number = 0
|
||||
|
||||
for i, job in jobs.iterrows():
|
||||
# print("index is :", i) # for debugging
|
||||
|
||||
if (i + 1) % 10 == 0 and i != 0:
|
||||
logging.warning("sleeping to avoid API rate limits")
|
||||
time.sleep(60)
|
||||
try_count = 3
|
||||
|
||||
while try_count > 0:
|
||||
|
||||
try:
|
||||
cleaned_description = "\n".join(
|
||||
[line for line in job["description"].splitlines() if line.strip()]
|
||||
)
|
||||
ai_response = generate(cleaned_description, cv, api_keys[key_number])
|
||||
ai_response_dict = json.loads(ai_response)
|
||||
break
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
try_count -= 1
|
||||
total_empty_response += 1
|
||||
if try_count == 0:
|
||||
total_fail += 1
|
||||
total_fail_empty_response += 1
|
||||
|
||||
logging.warning("Sleeping after JSONDecodeError")
|
||||
time.sleep(6)
|
||||
|
||||
except ServerError as e:
|
||||
|
||||
if e.details["error"]["code"] == 503:
|
||||
try_count -= 1
|
||||
total_overload += 1
|
||||
if try_count == 0:
|
||||
total_fail += 1
|
||||
total_fail_overload += 1
|
||||
logging.warning("sleeping to after The model is overloaded.")
|
||||
print(e.details)
|
||||
time.sleep(10)
|
||||
else:
|
||||
logging.critical(e.details)
|
||||
return 1
|
||||
|
||||
except ClientError as e:
|
||||
if e.details["error"]["code"] == 429:
|
||||
logging.warning("api limit hit")
|
||||
key_number += 1
|
||||
if key_number > len(api_keys) - 1:
|
||||
logging.critical("All api keys hit the limit")
|
||||
return 1
|
||||
else:
|
||||
logging.critical(e.details)
|
||||
return 1
|
||||
|
||||
else:
|
||||
logging.critical("All attempts failed")
|
||||
continue
|
||||
|
||||
if ai_response_dict["percentage"] > 50:
|
||||
good_fit_jobs.append(
|
||||
{
|
||||
"title": job["title"],
|
||||
"url": job["job_url"],
|
||||
"percentage": ai_response_dict["percentage"],
|
||||
"why I'm I a good fit": ai_response_dict["why I'm I a good fit"],
|
||||
"what I'm I missing": ai_response_dict["what I'm I missing"],
|
||||
}
|
||||
)
|
||||
print_stats
|
||||
return good_fit_jobs
|
||||
|
||||
|
||||
def print_stats():
|
||||
stats = f"""total fail: {total_fail}
|
||||
total empty responses: {total_empty_response} fail: {total_fail_empty_response}
|
||||
Total overloads: {total_overload} fail: {total_fail_overload}"""
|
||||
print(stats)
|
4
jobs.py
4
jobs.py
@@ -1,5 +1,5 @@
|
||||
from jobspy import scrape_jobs
|
||||
|
||||
import logging
|
||||
|
||||
def getJobs(jobTitle, results_wanted, hours_old):
|
||||
jobs = scrape_jobs(
|
||||
@@ -22,7 +22,7 @@ def getJobs(jobTitle, results_wanted, hours_old):
|
||||
linkedin_fetch_description=True, # gets more info such as description, direct job url (slower)
|
||||
# proxies=["208.195.175.46:65095", "208.195.175.45:65095", "localhost"],
|
||||
)
|
||||
print(f"Found {len(jobs)} jobs")
|
||||
logging.warning(f"Found {len(jobs)} {jobTitle} jobs")
|
||||
# print(jobs)
|
||||
return jobs
|
||||
# jobs.to_csv(
|
||||
|
113
main.py
113
main.py
@@ -1,12 +1,10 @@
|
||||
from jobs import getJobs
|
||||
from ai import generate
|
||||
from google.genai.errors import ServerError, ClientError
|
||||
from alert import send_email
|
||||
import json
|
||||
import time
|
||||
from filter import filter_jobs
|
||||
import os
|
||||
import logging
|
||||
from random import shuffle
|
||||
import pandas as pd
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.WARNING, format="%(asctime)s - %(levelname)s - %(message)s"
|
||||
@@ -16,110 +14,31 @@ SENDER = os.getenv("smtp_email")
|
||||
PASSWORD = os.getenv("smtp_password")
|
||||
RECEIVER = os.getenv("receiver_email")
|
||||
api_keys = os.getenv("api_keys").split(",")
|
||||
|
||||
good_fit_jobs = []
|
||||
|
||||
# stats
|
||||
total_fail = 0
|
||||
total_fail_overload = 0
|
||||
total_overload = 0
|
||||
total_empty_response = 0
|
||||
total_fail_empty_response = 0
|
||||
|
||||
shuffle(api_keys)
|
||||
|
||||
all_jobs = pd.DataFrame()
|
||||
good_fit_jobs = []
|
||||
|
||||
with open("instruction.txt", "r") as f:
|
||||
CV = f.read()
|
||||
|
||||
|
||||
def get_jobs(job_title, cv, results_wanted, hours_old):
|
||||
global total_fail, total_fail_overload, total_overload, total_empty_response, total_fail_empty_response
|
||||
key_number = 0
|
||||
|
||||
def get_jobs(job_title, results_wanted, hours_old):
|
||||
global all_jobs
|
||||
jobs = getJobs(job_title, results_wanted, hours_old)
|
||||
for i, job in jobs.iterrows():
|
||||
print("index is :", i) # for debugging
|
||||
|
||||
if (i + 1) % 10 == 0 and i != 0:
|
||||
logging.warning("sleeping to avoid API rate limits")
|
||||
time.sleep(60)
|
||||
try_count = 3
|
||||
|
||||
while try_count > 0:
|
||||
|
||||
try:
|
||||
cleaned_description = "\n".join(
|
||||
[line for line in job["description"].splitlines() if line.strip()]
|
||||
)
|
||||
ai_response = generate(cleaned_description, cv, api_keys[key_number])
|
||||
ai_response_dict = json.loads(ai_response)
|
||||
break
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
try_count -= 1
|
||||
total_empty_response += 1
|
||||
if try_count == 0:
|
||||
total_fail += 1
|
||||
total_fail_empty_response += 1
|
||||
|
||||
logging.warning("Sleeping after JSONDecodeError")
|
||||
time.sleep(6)
|
||||
|
||||
except ServerError as e:
|
||||
|
||||
if e.details["error"]["code"] == 503:
|
||||
try_count -= 1
|
||||
total_overload += 1
|
||||
if try_count == 0:
|
||||
total_fail += 1
|
||||
total_fail_overload += 1
|
||||
logging.warning("sleeping to after The model is overloaded.")
|
||||
print(e.details)
|
||||
time.sleep(10)
|
||||
else:
|
||||
logging.critical(e.details)
|
||||
return 1
|
||||
|
||||
except ClientError as e:
|
||||
if e.details["error"]["code"] == 429:
|
||||
logging.warning("api limit hit")
|
||||
key_number += 1
|
||||
if key_number > len(api_keys) - 1:
|
||||
logging.critical("All api keys hit the limit")
|
||||
return 1
|
||||
else:
|
||||
logging.critical(e.details)
|
||||
return 1
|
||||
|
||||
else:
|
||||
logging.critical("All attempts failed")
|
||||
continue
|
||||
|
||||
if ai_response_dict["percentage"] > 50:
|
||||
good_fit_jobs.append(
|
||||
{
|
||||
"title": job["title"],
|
||||
"url": job["job_url"],
|
||||
"percentage": ai_response_dict["percentage"],
|
||||
"why I'm I a good fit": ai_response_dict["why I'm I a good fit"],
|
||||
"what I'm I missing": ai_response_dict["what I'm I missing"],
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def print_stats():
|
||||
stats = f"""total fail: {total_fail}
|
||||
total empty responses: {total_empty_response} fail: {total_fail_empty_response}
|
||||
Total overloads: {total_overload} fail: {total_fail_overload}"""
|
||||
print(stats)
|
||||
all_jobs = pd.concat([all_jobs, jobs], ignore_index=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
get_jobs("devops", CV, results_wanted=30, hours_old=2)
|
||||
get_jobs("backend", CV, results_wanted=30, hours_old=2)
|
||||
get_jobs("software engineer", CV, results_wanted=30, hours_old=2)
|
||||
get_jobs("devops", results_wanted=30, hours_old=2)
|
||||
get_jobs("backend", results_wanted=30, hours_old=2)
|
||||
get_jobs("software engineer", results_wanted=30, hours_old=2)
|
||||
get_jobs("cloud", results_wanted=30, hours_old=2)
|
||||
get_jobs("sre", results_wanted=30, hours_old=2)
|
||||
get_jobs("intern", results_wanted=30, hours_old=2)
|
||||
all_jobs.drop_duplicates(inplace=True, ignore_index=True)
|
||||
filter_jobs(all_jobs, CV, api_keys, good_fit_jobs)
|
||||
if len(good_fit_jobs) > 0:
|
||||
send_email(SENDER, RECEIVER, PASSWORD, good_fit_jobs)
|
||||
else:
|
||||
print("no good fit jobs")
|
||||
print_stats()
|
||||
|
@@ -1,35 +1,2 @@
|
||||
annotated-types==0.7.0
|
||||
anyio==4.11.0
|
||||
beautifulsoup4==4.13.5
|
||||
cachetools==5.5.2
|
||||
certifi==2025.8.3
|
||||
charset-normalizer==3.4.3
|
||||
google-auth==2.40.3
|
||||
google-genai==1.38.0
|
||||
h11==0.16.0
|
||||
httpcore==1.0.9
|
||||
httpx==0.28.1
|
||||
idna==3.10
|
||||
markdownify==0.13.1
|
||||
numpy==1.26.3
|
||||
pandas==2.3.2
|
||||
pyasn1==0.6.1
|
||||
pyasn1_modules==0.4.2
|
||||
pydantic==2.11.9
|
||||
pydantic_core==2.33.2
|
||||
python-dateutil==2.9.0.post0
|
||||
python-jobspy==1.1.82
|
||||
pytz==2025.2
|
||||
regex==2024.11.6
|
||||
requests==2.32.5
|
||||
rsa==4.9.1
|
||||
six==1.17.0
|
||||
sniffio==1.3.1
|
||||
soupsieve==2.8
|
||||
tenacity==9.1.2
|
||||
tls-client==1.0.1
|
||||
typing-inspection==0.4.1
|
||||
typing_extensions==4.15.0
|
||||
tzdata==2025.2
|
||||
urllib3==2.5.0
|
||||
websockets==15.0.1
|
||||
google-genai==1.38.0
|
المرجع في مشكلة جديدة
حظر مستخدم