commit 1
هذا الالتزام موجود في:
179
app2.py
Normal file
179
app2.py
Normal file
@@ -0,0 +1,179 @@
|
||||
import os
|
||||
import uvicorn
|
||||
import requests
|
||||
from openai import OpenAI
|
||||
import PyPDF2
|
||||
from dotenv import load_dotenv
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# --- Configuration ---
|
||||
GITPASHA_HOST = "https://rag-app-fa66b3d8eb83.hosted.ghaymah.systems"
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="Remote PDF Summarizer API",
|
||||
description="Upload a PDF and get a summary using a remote RAG pipeline.",
|
||||
version="2.1.0"
|
||||
)
|
||||
|
||||
# Client for final summarization
|
||||
client = OpenAI(
|
||||
api_key=os.environ.get("OPENAI_API_KEY"),
|
||||
base_url="https://genai.ghaymah.systems"
|
||||
)
|
||||
|
||||
# Use a local embedding model that matches the remote vector store's expected dimension
|
||||
print("Initializing local embedding model (jinaai/jina-embeddings-v2-small-en)...")
|
||||
embeddings = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v2-small-en")
|
||||
print("Embedding model loaded.")
|
||||
|
||||
# --- Helper Functions ---
|
||||
|
||||
def extract_text_from_pdf(pdf_stream):
|
||||
"""Extracts text from a PDF file stream and cleans it."""
|
||||
print("Extracting text from PDF stream...")
|
||||
text = ""
|
||||
try:
|
||||
reader = PyPDF2.PdfReader(pdf_stream)
|
||||
for page in reader.pages:
|
||||
page_text = page.extract_text()
|
||||
if page_text:
|
||||
text += page_text
|
||||
print("Text extraction complete.")
|
||||
# Clean the extracted text for pure plain text
|
||||
text = ' '.join(text.split())
|
||||
return text
|
||||
except Exception as e:
|
||||
print(f"An error occurred while reading the PDF: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Failed to read PDF content: {e}")
|
||||
|
||||
def store_text_chunks_remote(text):
|
||||
"""Splits text, creates embeddings, and stores them in the remote GitPasha vector store."""
|
||||
if not text:
|
||||
print("Skipping storage: No text provided.")
|
||||
return False
|
||||
print("Splitting text into chunks...")
|
||||
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
||||
chunks = splitter.split_text(text)
|
||||
|
||||
print(f"Creating embeddings for {len(chunks)} chunks...")
|
||||
try:
|
||||
# Ensure the embedding model produces 512-dim vectors
|
||||
chunk_vectors = embeddings.embed_documents(chunks)
|
||||
payloads = [{"text_chunk": chunk} for chunk in chunks]
|
||||
except Exception as e:
|
||||
print(f"Failed to create embeddings: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Failed to create text embeddings: {e}")
|
||||
|
||||
print("Uploading vectors and payloads to remote GitPasha vector store...")
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{GITPASHA_HOST}/insert",
|
||||
json={"vectors": chunk_vectors, "payloads": payloads},
|
||||
headers={"Content-Type": "application/json"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
print(f"→ POST /insert: {response.status_code}")
|
||||
if response.status_code == 200:
|
||||
print("Upload complete ✅")
|
||||
return True
|
||||
else:
|
||||
raise HTTPException(status_code=response.status_code, detail=f"Failed to insert data into remote vector store: {response.text}")
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred while calling the remote /insert API: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Error connecting to remote vector store: {e}")
|
||||
|
||||
def get_summary_from_remote_rag(
|
||||
query: str,
|
||||
model: str = "DeepSeek-V3-0324"
|
||||
):
|
||||
"""Creates a query embedding, searches remote GitPasha, and summarizes."""
|
||||
print(f"Creating embedding for query: '{query}'")
|
||||
try:
|
||||
query_vector = embeddings.embed_query(query)
|
||||
except Exception as e:
|
||||
print(f"Failed to create query embedding: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Failed to create query embedding: {e}")
|
||||
|
||||
print("Retrieving relevant context from remote GitPasha vector store...")
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{GITPASHA_HOST}/search",
|
||||
json={"vector": query_vector, "k": 4},
|
||||
headers={"Content-Type": "application/json"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
search_results = response.json()
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred while calling the remote /search API: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Error searching remote vector store: {e}")
|
||||
|
||||
if not search_results or 'results' not in search_results or not search_results['results']:
|
||||
print("No relevant context found.")
|
||||
return "Could not find any relevant context to generate a summary for the query."
|
||||
|
||||
context = "\n\n".join([result['payload']['text_chunk'] for result in search_results['results']])
|
||||
|
||||
# Generate the final summary using the remote LLM
|
||||
print("Generating final summary using remote LLM...")
|
||||
try:
|
||||
completion_response = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant that summarizes documents based on the provided context."},
|
||||
{"role": "user", "content": f"Based on the following context, please answer the question.\n\nContext:\n{context}\n\nQuestion: {query}"}
|
||||
]
|
||||
)
|
||||
return completion_response.choices[0].message.content
|
||||
except Exception as e:
|
||||
print(f"An error occurred during final summarization: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Failed to generate summary from AI model: {e}")
|
||||
|
||||
# --- API Endpoints ---
|
||||
|
||||
@app.post("/summarize/")
|
||||
async def summarize_pdf(
|
||||
file: UploadFile = File(...),
|
||||
query: str = Form("Summarize the key points of this document.")
|
||||
):
|
||||
"""
|
||||
Accepts a PDF file and a query, then returns a summary.
|
||||
"""
|
||||
if file.content_type != "application/pdf":
|
||||
raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.")
|
||||
|
||||
try:
|
||||
# Extract text from the uploaded PDF file stream
|
||||
pdf_text = extract_text_from_pdf(file.file)
|
||||
|
||||
# Store the text chunks and their embeddings in the remote vector store
|
||||
if not store_text_chunks_remote(pdf_text):
|
||||
raise HTTPException(status_code=500, detail="Failed to process and store the document in remote vector store.")
|
||||
|
||||
# Query, retrieve context, and generate the summary using remote RAG
|
||||
summary = get_summary_from_remote_rag(query)
|
||||
|
||||
return JSONResponse(content={"summary": summary})
|
||||
|
||||
except HTTPException as e:
|
||||
# Re-raise HTTPException to be handled by FastAPI
|
||||
raise e
|
||||
except Exception as e:
|
||||
# Catch any other unexpected errors
|
||||
print(f"An unexpected error occurred: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"An unexpected server error occurred: {e}")
|
||||
|
||||
@app.get("/")
|
||||
def read_root():
|
||||
return {"message": "Welcome to the Remote PDF Summarizer API. Use /docs for documentation."}
|
||||
|
||||
# --- Main execution ---
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
28
temp.py
Normal file
28
temp.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import requests
|
||||
import json
|
||||
import random
|
||||
|
||||
HOST = "https://rag-app-fa66b3d8eb83.hosted.ghaymah.systems"
|
||||
N_DIM = 512
|
||||
|
||||
def random_vector():
|
||||
"""Generates a random 512-dimensional vector."""
|
||||
return [random.random() for _ in range(N_DIM)]
|
||||
|
||||
# Create a sample 512-dimensional vector and a dummy payload
|
||||
vectors_to_insert = [random_vector()]
|
||||
payloads = [{"test_data": "This is a test payload for 512-dim vector."}]
|
||||
print(vectors_to_insert)
|
||||
print(f"Attempting to send a {N_DIM}-dimensional vector to {HOST}/insert...")
|
||||
|
||||
try:
|
||||
insert_resp = requests.post(
|
||||
f"{HOST}/insert",
|
||||
json={"vectors": vectors_to_insert, "payloads": payloads},
|
||||
headers={"Content-Type": "application/json"}
|
||||
)
|
||||
insert_resp.raise_for_status() # Raise an exception for bad status codes
|
||||
print("Response Status Code:", insert_resp.status_code)
|
||||
print("Response Body:", insert_resp.text)
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred: {e}")
|
المرجع في مشكلة جديدة
حظر مستخدم