الملفات
rag-app/doc_rag_app.py
2025-09-11 09:58:10 +03:00

258 أسطر
9.2 KiB
Python

# doc_rag_app.py
import os
import json
import uvicorn
import requests
from dotenv import load_dotenv
from typing import Optional
from openai import OpenAI
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
# Load .env
load_dotenv()
# -----------------------
# Configuration
# -----------------------
GITPASHA_HOST = os.getenv(
"GITPASHA_HOST",
"https://app1-f06df021060b.hosted.ghaymah.systems"
) # remote GitPasha endpoint you provided
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # used only for final LLM summarization if needed
DOC_FILE = os.getenv("DOC_FILE", "full_ghaymah_docs.txt")
# -----------------------
# FastAPI + client
# -----------------------
app = FastAPI(title="Ghaymah Docs RAG API (Restarted)", version="1.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # or ["http://127.0.0.1:5500"] if serving HTML with Live Server
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# optional remote LLM client (only required if you want final answer generation)
client = None
if OPENAI_API_KEY:
client = OpenAI(api_key=OPENAI_API_KEY, base_url="https://genai.ghaymah.systems")
# -----------------------
# Embedding model (512 dims)
# -----------------------
print("Initializing local embedding model (sentence-transformers/distiluse-base-multilingual-cased)...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/distiluse-base-multilingual-cased")
print("Embedding model loaded.")
# -----------------------
# Request Models
# -----------------------
class QueryRequest(BaseModel):
query: str
k: Optional[int] = 10 # allow overriding k
class IngestRequest(BaseModel):
# keep for future if want dynamic file name content ingestion
filename: Optional[str] = None
# -----------------------
# Helpers
# -----------------------
def _embed_texts(texts):
"""Return list of embeddings for given texts."""
return embeddings.embed_documents(texts)
def _embed_query(text):
"""Return single embedding for query (list)."""
return embeddings.embed_query(text)
def store_text_chunks_remote(text: str) -> bool:
"""Split text, embed chunks, and insert to remote GitPasha."""
if not text:
print("No text provided to store.")
return False
# Split
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.split_text(text)
print(f"[store] Split into {len(chunks)} chunks.")
# Create embeddings
try:
chunk_vectors = _embed_texts(chunks)
except Exception as e:
print(f"[store] Embedding creation error: {e}")
raise HTTPException(status_code=500, detail=f"Failed to create embeddings: {e}")
# Log embedding dimension sanity check
if chunk_vectors and isinstance(chunk_vectors[0], list):
print(f"[store] Embedding vector dimension: {len(chunk_vectors[0])}")
else:
print(f"[store] Unexpected embedding format. First vector: {type(chunk_vectors[0])}")
payloads = [{"text_chunk": chunk} for chunk in chunks]
# Send to GitPasha
try:
resp = requests.post(
f"{GITPASHA_HOST.rstrip('/')}/insert",
json={"vectors": chunk_vectors, "payloads": payloads},
headers={"Content-Type": "application/json"},
timeout=60
)
resp.raise_for_status()
print(f"[store] Remote insert status: {resp.status_code}")
return True
except requests.exceptions.RequestException as e:
print(f"[store] Error calling remote insert: {e} / Response: {getattr(e, 'response', None)}")
raise HTTPException(status_code=500, detail=f"Failed to insert to remote vector store: {e}")
def search_remote_by_vector(vector, k=10):
"""Call remote /search with given vector and return parsed JSON (raw)."""
try:
resp = requests.post(
f"{GITPASHA_HOST.rstrip('/')}/search",
json={"vector": vector, "k": k},
headers={"Content-Type": "application/json"},
timeout=30
)
resp.raise_for_status()
return resp.json()
except requests.exceptions.RequestException as e:
print(f"[search] Error calling remote search: {e}")
raise HTTPException(status_code=500, detail=f"Remote search failed: {e}")
def build_context_from_search_results(search_results, min_score: Optional[float] = None):
"""Given remote search results, optionally filter by min_score and return context text and metadata."""
if not search_results or "results" not in search_results:
return "", []
items = []
for r in search_results["results"]:
score = r.get("score", None)
payload = r.get("payload", {})
text_chunk = payload.get("text_chunk", "")
if min_score is None or (score is not None and score >= min_score):
items.append({"score": score, "text": text_chunk})
context = "\n\n".join([it["text"] for it in items])
return context, items
# -----------------------
# Startup: optionally auto-ingest file on startup
# -----------------------
@app.on_event("startup")
def startup_ingest():
"""On startup, attempt to ingest DOC_FILE automatically (non-fatal)."""
print(f"[startup] Attempting to ingest '{DOC_FILE}' on startup (if present).")
if not os.path.exists(DOC_FILE):
print(f"[startup] File '{DOC_FILE}' not found; skipping automatic ingestion.")
return
try:
with open(DOC_FILE, "r", encoding="utf-8") as f:
text = f.read()
ok = store_text_chunks_remote(text)
if ok:
print(f"[startup] Ingested '{DOC_FILE}' successfully.")
except Exception as e:
# do not prevent server from starting
print(f"[startup] Ingest error (non-fatal): {e}")
# -----------------------
# Endpoints
# -----------------------
@app.post("/ingest-docs/")
async def ingest_docs(req: IngestRequest = None):
"""Read full_ghaymah_docs.txt and store it remotely. Returns success message."""
filename = DOC_FILE
try:
with open(filename, "r", encoding="utf-8") as f:
text = f.read()
except FileNotFoundError:
raise HTTPException(status_code=404, detail=f"{filename} not found in working folder.")
ok = store_text_chunks_remote(text)
if ok:
return JSONResponse(content={"message": f"Successfully ingested '{filename}' into vector store."})
raise HTTPException(status_code=500, detail="Ingestion failed.")
@app.post("/query/")
async def query_docs(request: QueryRequest):
query = request.query
k = request.k or 10
print(f"[query] Received query: {query} (k={k})")
# Embed query
qvec = _embed_query(query)
# Remote vector search
search_results = search_remote_by_vector(qvec, k=k)
payloads = [p["text_chunk"] for p in search_results.get("payloads", [])]
if not payloads:
return {"answer": "No relevant chunks found.", "search_results": search_results}
# Deduplicate chunks (keep first occurrence)
seen = set()
context_chunks = []
for chunk in payloads:
if chunk not in seen:
context_chunks.append(chunk)
seen.add(chunk)
context = "\n\n".join(context_chunks)
# Use LLM if available
if client:
try:
completion = client.chat.completions.create(
model="DeepSeek-V3-0324",
messages=[
{"role": "system", "content": "You are a helpful assistant for Ghaymah Cloud. Answer the question using the context provided."},
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
],
temperature=0.0,
)
answer = completion.choices[0].message.content
return {"answer": answer, "context": context_chunks, "scores": search_results.get("scores", [])}
except Exception as e:
print(f"[query] LLM failed: {e}")
return {"answer": context, "context": context_chunks, "scores": search_results.get("scores", [])}
else:
return {"answer": context, "context": context_chunks, "scores": search_results.get("scores", [])}
@app.post("/debug-search/")
async def debug_search(request: QueryRequest):
"""
Debug endpoint: returns raw search response from remote vector store for the provided query.
Use this to inspect exact 'results' and scores returned remotely.
"""
query = request.query
k = request.k or 10
print(f"[debug-search] Query: {query} (k={k})")
try:
qvec = _embed_query(query)
print(f"[debug-search] Query embedding length: {len(qvec)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Embedding failed: {e}")
raw = search_remote_by_vector(qvec, k=k)
return JSONResponse(content={"search_response": raw})
@app.get("/")
def read_root():
return {"message": "Ghaymah Docs RAG API. Use /docs for interactive UI."}
# -----------------------
# Run
# -----------------------
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)