149 أسطر
5.3 KiB
Python
149 أسطر
5.3 KiB
Python
import os
|
|
import argparse
|
|
import requests
|
|
import json
|
|
from openai import OpenAI
|
|
import PyPDF2
|
|
from dotenv import load_dotenv
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
load_dotenv()
|
|
|
|
# --- Configuration ---
|
|
GITPASHA_HOST = "https://serverless-store-77838979b96f.hosted.ghaymah.systems"
|
|
|
|
# Client for final summarization
|
|
client = OpenAI(
|
|
api_key=os.environ.get("OPENAI_API_KEY"),
|
|
base_url="https://genai.ghaymah.systems"
|
|
)
|
|
|
|
# Client for creating embeddings
|
|
embeddings = OpenAIEmbeddings(
|
|
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
|
openai_api_base="https://genai.ghaymah.systems"
|
|
)
|
|
|
|
def extract_text_from_pdf(pdf_path):
|
|
"""Extracts text from a PDF file."""
|
|
print(f"Extracting text from {pdf_path}...")
|
|
text = ""
|
|
try:
|
|
with open(pdf_path, "rb") as f:
|
|
reader = PyPDF2.PdfReader(f)
|
|
for page in reader.pages:
|
|
page_text = page.extract_text()
|
|
if page_text:
|
|
text += page_text
|
|
except FileNotFoundError:
|
|
print(f"Error: The file at {pdf_path} was not found.")
|
|
return None
|
|
except Exception as e:
|
|
print(f"An error occurred while reading the PDF: {e}")
|
|
return None
|
|
print("Text extraction complete.")
|
|
return text
|
|
|
|
def store_text_chunks(text):
|
|
"""Splits text, creates embeddings, and stores them in GitPasha."""
|
|
print("Splitting text into chunks...")
|
|
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
|
chunks = splitter.split_text(text)
|
|
|
|
print(f"Creating embeddings for {len(chunks)} chunks...")
|
|
try:
|
|
chunk_vectors = embeddings.embed_documents(chunks)
|
|
payloads = [{"text_chunk": chunk} for chunk in chunks]
|
|
except Exception as e:
|
|
print(f"Failed to create embeddings: {e}")
|
|
return False
|
|
|
|
print("Uploading vectors and payloads to GitPasha...")
|
|
try:
|
|
response = requests.post(
|
|
f"{GITPASHA_HOST}/insert",
|
|
json={"vectors": chunk_vectors, "payloads": payloads},
|
|
headers={"Content-Type": "application/json"}
|
|
)
|
|
response.raise_for_status() # Raise an exception for bad status codes
|
|
print("→ POST /insert:", response.status_code, response.text)
|
|
if response.status_code == 200:
|
|
print("Upload complete ✅")
|
|
return True
|
|
else:
|
|
print(f"Failed to insert data. Status: {response.status_code}, Response: {response.text}")
|
|
return False
|
|
except requests.exceptions.RequestException as e:
|
|
print(f"An error occurred while calling the /insert API: {e}")
|
|
return False
|
|
|
|
def summarize_with_context(query, model="DeepSeek-V3-0324"):
|
|
"""Creates a query embedding, searches GitPasha, and summarizes."""
|
|
print(f"Creating embedding for query: '{query}'")
|
|
try:
|
|
query_vector = embeddings.embed_query(query)
|
|
except Exception as e:
|
|
print(f"Failed to create query embedding: {e}")
|
|
return None
|
|
|
|
print("Retrieving relevant context from GitPasha...")
|
|
try:
|
|
response = requests.post(
|
|
f"{GITPASHA_HOST}/search",
|
|
json={"vector": query_vector, "k": 4},
|
|
headers={"Content-Type": "application/json"}
|
|
)
|
|
response.raise_for_status()
|
|
print("→ POST /search:", response.status_code)
|
|
search_results = response.json()
|
|
except requests.exceptions.RequestException as e:
|
|
print(f"An error occurred while calling the /search API: {e}")
|
|
return None
|
|
|
|
if not search_results or 'results' not in search_results:
|
|
print("No relevant context found.")
|
|
return "Could not find any relevant context to generate a summary."
|
|
|
|
context = "\n\n".join([result['payload']['text_chunk'] for result in search_results['results']])
|
|
|
|
print("Generating final summary...")
|
|
try:
|
|
response = client.chat.completions.create(
|
|
model=model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant that summarizes documents based on the provided context."},
|
|
{"role": "user", "content": f"Based on the following context, please answer the question.\n\nContext:\n{context}\n\nQuestion: {query}"}
|
|
]
|
|
)
|
|
return response.choices[0].message.content
|
|
except Exception as e:
|
|
print(f"An error occurred during final summarization: {e}")
|
|
return None
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Summarize a PDF using a remote Serverless Vector Store + AI.")
|
|
parser.add_argument("pdf_path", help="Path to the PDF file.")
|
|
parser.add_argument("--query", help="Custom question about the PDF.", default="Summarize the key points of this document.")
|
|
args = parser.parse_args()
|
|
|
|
# 1. Extract text from the PDF
|
|
pdf_text = extract_text_from_pdf(args.pdf_path)
|
|
if not pdf_text:
|
|
print("Aborting due to empty text from PDF.")
|
|
return
|
|
|
|
# 2. Store the text chunks and their embeddings
|
|
if not store_text_chunks(pdf_text):
|
|
print("Aborting due to failure in storing document.")
|
|
return
|
|
|
|
# 3. Query, retrieve context, and summarize
|
|
summary = summarize_with_context(args.query)
|
|
if summary:
|
|
print("\n--- Contextual Summary ---")
|
|
print(summary)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|