main #1
174
.gitignore
مباع
174
.gitignore
مباع
@@ -1,176 +1,2 @@
|
|||||||
# ---> Python
|
|
||||||
# Byte-compiled / optimized / DLL files
|
|
||||||
__pycache__/
|
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
wheels/
|
|
||||||
share/python-wheels/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
MANIFEST
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.nox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*.cover
|
|
||||||
*.py,cover
|
|
||||||
.hypothesis/
|
|
||||||
.pytest_cache/
|
|
||||||
cover/
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
local_settings.py
|
|
||||||
db.sqlite3
|
|
||||||
db.sqlite3-journal
|
|
||||||
|
|
||||||
# Flask stuff:
|
|
||||||
instance/
|
|
||||||
.webassets-cache
|
|
||||||
|
|
||||||
# Scrapy stuff:
|
|
||||||
.scrapy
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
.pybuilder/
|
|
||||||
target/
|
|
||||||
|
|
||||||
# Jupyter Notebook
|
|
||||||
.ipynb_checkpoints
|
|
||||||
|
|
||||||
# IPython
|
|
||||||
profile_default/
|
|
||||||
ipython_config.py
|
|
||||||
|
|
||||||
# pyenv
|
|
||||||
# For a library or package, you might want to ignore these files since the code is
|
|
||||||
# intended to run in multiple environments; otherwise, check them in:
|
|
||||||
# .python-version
|
|
||||||
|
|
||||||
# pipenv
|
|
||||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
||||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
||||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
||||||
# install all needed dependencies.
|
|
||||||
#Pipfile.lock
|
|
||||||
|
|
||||||
# UV
|
|
||||||
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
|
||||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
||||||
# commonly ignored for libraries.
|
|
||||||
#uv.lock
|
|
||||||
|
|
||||||
# poetry
|
|
||||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
||||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
||||||
# commonly ignored for libraries.
|
|
||||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
||||||
#poetry.lock
|
|
||||||
|
|
||||||
# pdm
|
|
||||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
||||||
#pdm.lock
|
|
||||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
|
||||||
# in version control.
|
|
||||||
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
|
||||||
.pdm.toml
|
|
||||||
.pdm-python
|
|
||||||
.pdm-build/
|
|
||||||
|
|
||||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
||||||
__pypackages__/
|
|
||||||
|
|
||||||
# Celery stuff
|
|
||||||
celerybeat-schedule
|
|
||||||
celerybeat.pid
|
|
||||||
|
|
||||||
# SageMath parsed files
|
|
||||||
*.sage.py
|
|
||||||
|
|
||||||
# Environments
|
|
||||||
.env
|
.env
|
||||||
.venv
|
|
||||||
env/
|
|
||||||
venv/
|
venv/
|
||||||
ENV/
|
|
||||||
env.bak/
|
|
||||||
venv.bak/
|
|
||||||
|
|
||||||
# Spyder project settings
|
|
||||||
.spyderproject
|
|
||||||
.spyproject
|
|
||||||
|
|
||||||
# Rope project settings
|
|
||||||
.ropeproject
|
|
||||||
|
|
||||||
# mkdocs documentation
|
|
||||||
/site
|
|
||||||
|
|
||||||
# mypy
|
|
||||||
.mypy_cache/
|
|
||||||
.dmypy.json
|
|
||||||
dmypy.json
|
|
||||||
|
|
||||||
# Pyre type checker
|
|
||||||
.pyre/
|
|
||||||
|
|
||||||
# pytype static type analyzer
|
|
||||||
.pytype/
|
|
||||||
|
|
||||||
# Cython debug symbols
|
|
||||||
cython_debug/
|
|
||||||
|
|
||||||
# PyCharm
|
|
||||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
||||||
#.idea/
|
|
||||||
|
|
||||||
# Ruff stuff:
|
|
||||||
.ruff_cache/
|
|
||||||
|
|
||||||
# PyPI configuration file
|
|
||||||
.pypirc
|
|
||||||
|
|
||||||
|
21
README.md
21
README.md
@@ -1,2 +1,21 @@
|
|||||||
# PDFSummerizorV1
|
# PDF Summarizer V1
|
||||||
|
|
||||||
|
This project is a command-line tool to summarize PDF documents using a two-step process with AI models.
|
||||||
|
|
||||||
|
## How it works
|
||||||
|
|
||||||
|
1. **Extracts Text**: The tool first extracts the text content from the provided PDF file.
|
||||||
|
2. **Initial Summary**: It then uses a generative AI model (e.g., `gemma-3-4b-it`) to create an initial summary of the text.
|
||||||
|
3. **Refined Summary**: This initial summary is then passed to a second, potentially more advanced model (e.g., `QwQ-32B`), to refine and improve the summary.
|
||||||
|
|
||||||
|
## How to use
|
||||||
|
|
||||||
|
1. Install the required dependencies:
|
||||||
|
```bash
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
2. Place your PDF file in the `uploads` directory.
|
||||||
|
3. Run the application from your terminal:
|
||||||
|
```bash
|
||||||
|
python app.py uploads/your_file.pdf
|
||||||
|
```
|
||||||
|
148
app.py
Normal file
148
app.py
Normal file
@@ -0,0 +1,148 @@
|
|||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import requests
|
||||||
|
import json
|
||||||
|
from openai import OpenAI
|
||||||
|
import PyPDF2
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# --- Configuration ---
|
||||||
|
GITPASHA_HOST = "https://serverless-store-77838979b96f.hosted.ghaymah.systems"
|
||||||
|
|
||||||
|
# Client for final summarization
|
||||||
|
client = OpenAI(
|
||||||
|
api_key=os.environ.get("OPENAI_API_KEY"),
|
||||||
|
base_url="https://genai.ghaymah.systems"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Client for creating embeddings
|
||||||
|
embeddings = OpenAIEmbeddings(
|
||||||
|
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
||||||
|
openai_api_base="https://genai.ghaymah.systems"
|
||||||
|
)
|
||||||
|
|
||||||
|
def extract_text_from_pdf(pdf_path):
|
||||||
|
"""Extracts text from a PDF file."""
|
||||||
|
print(f"Extracting text from {pdf_path}...")
|
||||||
|
text = ""
|
||||||
|
try:
|
||||||
|
with open(pdf_path, "rb") as f:
|
||||||
|
reader = PyPDF2.PdfReader(f)
|
||||||
|
for page in reader.pages:
|
||||||
|
page_text = page.extract_text()
|
||||||
|
if page_text:
|
||||||
|
text += page_text
|
||||||
|
except FileNotFoundError:
|
||||||
|
print(f"Error: The file at {pdf_path} was not found.")
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred while reading the PDF: {e}")
|
||||||
|
return None
|
||||||
|
print("Text extraction complete.")
|
||||||
|
return text
|
||||||
|
|
||||||
|
def store_text_chunks(text):
|
||||||
|
"""Splits text, creates embeddings, and stores them in GitPasha."""
|
||||||
|
print("Splitting text into chunks...")
|
||||||
|
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
||||||
|
chunks = splitter.split_text(text)
|
||||||
|
|
||||||
|
print(f"Creating embeddings for {len(chunks)} chunks...")
|
||||||
|
try:
|
||||||
|
chunk_vectors = embeddings.embed_documents(chunks)
|
||||||
|
payloads = [{"text_chunk": chunk} for chunk in chunks]
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to create embeddings: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
print("Uploading vectors and payloads to GitPasha...")
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{GITPASHA_HOST}/insert",
|
||||||
|
json={"vectors": chunk_vectors, "payloads": payloads},
|
||||||
|
headers={"Content-Type": "application/json"}
|
||||||
|
)
|
||||||
|
response.raise_for_status() # Raise an exception for bad status codes
|
||||||
|
print("→ POST /insert:", response.status_code, response.text)
|
||||||
|
if response.status_code == 200:
|
||||||
|
print("Upload complete ✅")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
print(f"Failed to insert data. Status: {response.status_code}, Response: {response.text}")
|
||||||
|
return False
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
print(f"An error occurred while calling the /insert API: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def summarize_with_context(query, model="DeepSeek-V3-0324"):
|
||||||
|
"""Creates a query embedding, searches GitPasha, and summarizes."""
|
||||||
|
print(f"Creating embedding for query: '{query}'")
|
||||||
|
try:
|
||||||
|
query_vector = embeddings.embed_query(query)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to create query embedding: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
print("Retrieving relevant context from GitPasha...")
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{GITPASHA_HOST}/search",
|
||||||
|
json={"vector": query_vector, "k": 4},
|
||||||
|
headers={"Content-Type": "application/json"}
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
print("→ POST /search:", response.status_code)
|
||||||
|
search_results = response.json()
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
print(f"An error occurred while calling the /search API: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
if not search_results or 'results' not in search_results:
|
||||||
|
print("No relevant context found.")
|
||||||
|
return "Could not find any relevant context to generate a summary."
|
||||||
|
|
||||||
|
context = "\n\n".join([result['payload']['text_chunk'] for result in search_results['results']])
|
||||||
|
|
||||||
|
print("Generating final summary...")
|
||||||
|
try:
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model=model,
|
||||||
|
messages=[
|
||||||
|
{"role": "system", "content": "You are a helpful assistant that summarizes documents based on the provided context."},
|
||||||
|
{"role": "user", "content": f"Based on the following context, please answer the question.\n\nContext:\n{context}\n\nQuestion: {query}"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
return response.choices[0].message.content
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred during final summarization: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Summarize a PDF using a remote Serverless Vector Store + AI.")
|
||||||
|
parser.add_argument("pdf_path", help="Path to the PDF file.")
|
||||||
|
parser.add_argument("--query", help="Custom question about the PDF.", default="Summarize the key points of this document.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# 1. Extract text from the PDF
|
||||||
|
pdf_text = extract_text_from_pdf(args.pdf_path)
|
||||||
|
if not pdf_text:
|
||||||
|
print("Aborting due to empty text from PDF.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 2. Store the text chunks and their embeddings
|
||||||
|
if not store_text_chunks(pdf_text):
|
||||||
|
print("Aborting due to failure in storing document.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 3. Query, retrieve context, and summarize
|
||||||
|
summary = summarize_with_context(args.query)
|
||||||
|
if summary:
|
||||||
|
print("\n--- Contextual Summary ---")
|
||||||
|
print(summary)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
179
app2.py
Normal file
179
app2.py
Normal file
@@ -0,0 +1,179 @@
|
|||||||
|
import os
|
||||||
|
import uvicorn
|
||||||
|
import requests
|
||||||
|
from openai import OpenAI
|
||||||
|
import PyPDF2
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||||
|
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
||||||
|
from fastapi.responses import JSONResponse
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# --- Configuration ---
|
||||||
|
GITPASHA_HOST = "https://rag-app-fa66b3d8eb83.hosted.ghaymah.systems"
|
||||||
|
|
||||||
|
# Initialize FastAPI app
|
||||||
|
app = FastAPI(
|
||||||
|
title="Remote PDF Summarizer API",
|
||||||
|
description="Upload a PDF and get a summary using a remote RAG pipeline.",
|
||||||
|
version="2.1.0"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Client for final summarization
|
||||||
|
client = OpenAI(
|
||||||
|
api_key=os.environ.get("OPENAI_API_KEY"),
|
||||||
|
base_url="https://genai.ghaymah.systems"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Use a local embedding model that matches the remote vector store's expected dimension
|
||||||
|
print("Initializing local embedding model (jinaai/jina-embeddings-v2-small-en)...")
|
||||||
|
embeddings = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v2-small-en")
|
||||||
|
print("Embedding model loaded.")
|
||||||
|
|
||||||
|
# --- Helper Functions ---
|
||||||
|
|
||||||
|
def extract_text_from_pdf(pdf_stream):
|
||||||
|
"""Extracts text from a PDF file stream and cleans it."""
|
||||||
|
print("Extracting text from PDF stream...")
|
||||||
|
text = ""
|
||||||
|
try:
|
||||||
|
reader = PyPDF2.PdfReader(pdf_stream)
|
||||||
|
for page in reader.pages:
|
||||||
|
page_text = page.extract_text()
|
||||||
|
if page_text:
|
||||||
|
text += page_text
|
||||||
|
print("Text extraction complete.")
|
||||||
|
# Clean the extracted text for pure plain text
|
||||||
|
text = ' '.join(text.split())
|
||||||
|
return text
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred while reading the PDF: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"Failed to read PDF content: {e}")
|
||||||
|
|
||||||
|
def store_text_chunks_remote(text):
|
||||||
|
"""Splits text, creates embeddings, and stores them in the remote GitPasha vector store."""
|
||||||
|
if not text:
|
||||||
|
print("Skipping storage: No text provided.")
|
||||||
|
return False
|
||||||
|
print("Splitting text into chunks...")
|
||||||
|
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
||||||
|
chunks = splitter.split_text(text)
|
||||||
|
|
||||||
|
print(f"Creating embeddings for {len(chunks)} chunks...")
|
||||||
|
try:
|
||||||
|
# Ensure the embedding model produces 512-dim vectors
|
||||||
|
chunk_vectors = embeddings.embed_documents(chunks)
|
||||||
|
payloads = [{"text_chunk": chunk} for chunk in chunks]
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to create embeddings: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"Failed to create text embeddings: {e}")
|
||||||
|
|
||||||
|
print("Uploading vectors and payloads to remote GitPasha vector store...")
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{GITPASHA_HOST}/insert",
|
||||||
|
json={"vectors": chunk_vectors, "payloads": payloads},
|
||||||
|
headers={"Content-Type": "application/json"}
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
print(f"→ POST /insert: {response.status_code}")
|
||||||
|
if response.status_code == 200:
|
||||||
|
print("Upload complete ✅")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
raise HTTPException(status_code=response.status_code, detail=f"Failed to insert data into remote vector store: {response.text}")
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
print(f"An error occurred while calling the remote /insert API: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"Error connecting to remote vector store: {e}")
|
||||||
|
|
||||||
|
def get_summary_from_remote_rag(
|
||||||
|
query: str,
|
||||||
|
model: str = "DeepSeek-V3-0324"
|
||||||
|
):
|
||||||
|
"""Creates a query embedding, searches remote GitPasha, and summarizes."""
|
||||||
|
print(f"Creating embedding for query: '{query}'")
|
||||||
|
try:
|
||||||
|
query_vector = embeddings.embed_query(query)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to create query embedding: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"Failed to create query embedding: {e}")
|
||||||
|
|
||||||
|
print("Retrieving relevant context from remote GitPasha vector store...")
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{GITPASHA_HOST}/search",
|
||||||
|
json={"vector": query_vector, "k": 4},
|
||||||
|
headers={"Content-Type": "application/json"}
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
search_results = response.json()
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
print(f"An error occurred while calling the remote /search API: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"Error searching remote vector store: {e}")
|
||||||
|
|
||||||
|
if not search_results or 'results' not in search_results or not search_results['results']:
|
||||||
|
print("No relevant context found.")
|
||||||
|
return "Could not find any relevant context to generate a summary for the query."
|
||||||
|
|
||||||
|
context = "\n\n".join([result['payload']['text_chunk'] for result in search_results['results']])
|
||||||
|
|
||||||
|
# Generate the final summary using the remote LLM
|
||||||
|
print("Generating final summary using remote LLM...")
|
||||||
|
try:
|
||||||
|
completion_response = client.chat.completions.create(
|
||||||
|
model=model,
|
||||||
|
messages=[
|
||||||
|
{"role": "system", "content": "You are a helpful assistant that summarizes documents based on the provided context."},
|
||||||
|
{"role": "user", "content": f"Based on the following context, please answer the question.\n\nContext:\n{context}\n\nQuestion: {query}"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
return completion_response.choices[0].message.content
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred during final summarization: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"Failed to generate summary from AI model: {e}")
|
||||||
|
|
||||||
|
# --- API Endpoints ---
|
||||||
|
|
||||||
|
@app.post("/summarize/")
|
||||||
|
async def summarize_pdf(
|
||||||
|
file: UploadFile = File(...),
|
||||||
|
query: str = Form("Summarize the key points of this document.")
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Accepts a PDF file and a query, then returns a summary.
|
||||||
|
"""
|
||||||
|
if file.content_type != "application/pdf":
|
||||||
|
raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Extract text from the uploaded PDF file stream
|
||||||
|
pdf_text = extract_text_from_pdf(file.file)
|
||||||
|
|
||||||
|
# Store the text chunks and their embeddings in the remote vector store
|
||||||
|
if not store_text_chunks_remote(pdf_text):
|
||||||
|
raise HTTPException(status_code=500, detail="Failed to process and store the document in remote vector store.")
|
||||||
|
|
||||||
|
# Query, retrieve context, and generate the summary using remote RAG
|
||||||
|
summary = get_summary_from_remote_rag(query)
|
||||||
|
|
||||||
|
return JSONResponse(content={"summary": summary})
|
||||||
|
|
||||||
|
except HTTPException as e:
|
||||||
|
# Re-raise HTTPException to be handled by FastAPI
|
||||||
|
raise e
|
||||||
|
except Exception as e:
|
||||||
|
# Catch any other unexpected errors
|
||||||
|
print(f"An unexpected error occurred: {e}")
|
||||||
|
raise HTTPException(status_code=500, detail=f"An unexpected server error occurred: {e}")
|
||||||
|
|
||||||
|
@app.get("/")
|
||||||
|
def read_root():
|
||||||
|
return {"message": "Welcome to the Remote PDF Summarizer API. Use /docs for documentation."}
|
||||||
|
|
||||||
|
# --- Main execution ---
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8000)
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
openai
|
||||||
|
PyPDF2
|
||||||
|
python-dotenv
|
||||||
|
langchain
|
||||||
|
tiktoken
|
||||||
|
requests
|
28
temp.py
Normal file
28
temp.py
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
import requests
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
|
||||||
|
HOST = "https://rag-app-fa66b3d8eb83.hosted.ghaymah.systems"
|
||||||
|
N_DIM = 512
|
||||||
|
|
||||||
|
def random_vector():
|
||||||
|
"""Generates a random 512-dimensional vector."""
|
||||||
|
return [random.random() for _ in range(N_DIM)]
|
||||||
|
|
||||||
|
# Create a sample 512-dimensional vector and a dummy payload
|
||||||
|
vectors_to_insert = [random_vector()]
|
||||||
|
payloads = [{"test_data": "This is a test payload for 512-dim vector."}]
|
||||||
|
print(vectors_to_insert)
|
||||||
|
print(f"Attempting to send a {N_DIM}-dimensional vector to {HOST}/insert...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
insert_resp = requests.post(
|
||||||
|
f"{HOST}/insert",
|
||||||
|
json={"vectors": vectors_to_insert, "payloads": payloads},
|
||||||
|
headers={"Content-Type": "application/json"}
|
||||||
|
)
|
||||||
|
insert_resp.raise_for_status() # Raise an exception for bad status codes
|
||||||
|
print("Response Status Code:", insert_resp.status_code)
|
||||||
|
print("Response Body:", insert_resp.text)
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
print(f"An error occurred: {e}")
|
ثنائية
uploads/test1.pdf
Normal file
ثنائية
uploads/test1.pdf
Normal file
ملف ثنائي غير معروض.
المرجع في مشكلة جديدة
حظر مستخدم