Initial commit
هذا الالتزام موجود في:
2
.gitignore
مباع
Normal file
2
.gitignore
مباع
Normal file
@@ -0,0 +1,2 @@
|
||||
.env
|
||||
venv/
|
21
README.md
Normal file
21
README.md
Normal file
@@ -0,0 +1,21 @@
|
||||
# PDF Summarizer V1
|
||||
|
||||
This project is a command-line tool to summarize PDF documents using a two-step process with AI models.
|
||||
|
||||
## How it works
|
||||
|
||||
1. **Extracts Text**: The tool first extracts the text content from the provided PDF file.
|
||||
2. **Initial Summary**: It then uses a generative AI model (e.g., `gemma-3-4b-it`) to create an initial summary of the text.
|
||||
3. **Refined Summary**: This initial summary is then passed to a second, potentially more advanced model (e.g., `QwQ-32B`), to refine and improve the summary.
|
||||
|
||||
## How to use
|
||||
|
||||
1. Install the required dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
2. Place your PDF file in the `uploads` directory.
|
||||
3. Run the application from your terminal:
|
||||
```bash
|
||||
python app.py uploads/your_file.pdf
|
||||
```
|
148
app.py
Normal file
148
app.py
Normal file
@@ -0,0 +1,148 @@
|
||||
import os
|
||||
import argparse
|
||||
import requests
|
||||
import json
|
||||
from openai import OpenAI
|
||||
import PyPDF2
|
||||
from dotenv import load_dotenv
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# --- Configuration ---
|
||||
GITPASHA_HOST = "https://serverless-store-77838979b96f.hosted.ghaymah.systems"
|
||||
|
||||
# Client for final summarization
|
||||
client = OpenAI(
|
||||
api_key=os.environ.get("OPENAI_API_KEY"),
|
||||
base_url="https://genai.ghaymah.systems"
|
||||
)
|
||||
|
||||
# Client for creating embeddings
|
||||
embeddings = OpenAIEmbeddings(
|
||||
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
||||
openai_api_base="https://genai.ghaymah.systems"
|
||||
)
|
||||
|
||||
def extract_text_from_pdf(pdf_path):
|
||||
"""Extracts text from a PDF file."""
|
||||
print(f"Extracting text from {pdf_path}...")
|
||||
text = ""
|
||||
try:
|
||||
with open(pdf_path, "rb") as f:
|
||||
reader = PyPDF2.PdfReader(f)
|
||||
for page in reader.pages:
|
||||
page_text = page.extract_text()
|
||||
if page_text:
|
||||
text += page_text
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file at {pdf_path} was not found.")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"An error occurred while reading the PDF: {e}")
|
||||
return None
|
||||
print("Text extraction complete.")
|
||||
return text
|
||||
|
||||
def store_text_chunks(text):
|
||||
"""Splits text, creates embeddings, and stores them in GitPasha."""
|
||||
print("Splitting text into chunks...")
|
||||
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
||||
chunks = splitter.split_text(text)
|
||||
|
||||
print(f"Creating embeddings for {len(chunks)} chunks...")
|
||||
try:
|
||||
chunk_vectors = embeddings.embed_documents(chunks)
|
||||
payloads = [{"text_chunk": chunk} for chunk in chunks]
|
||||
except Exception as e:
|
||||
print(f"Failed to create embeddings: {e}")
|
||||
return False
|
||||
|
||||
print("Uploading vectors and payloads to GitPasha...")
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{GITPASHA_HOST}/insert",
|
||||
json={"vectors": chunk_vectors, "payloads": payloads},
|
||||
headers={"Content-Type": "application/json"}
|
||||
)
|
||||
response.raise_for_status() # Raise an exception for bad status codes
|
||||
print("→ POST /insert:", response.status_code, response.text)
|
||||
if response.status_code == 200:
|
||||
print("Upload complete ✅")
|
||||
return True
|
||||
else:
|
||||
print(f"Failed to insert data. Status: {response.status_code}, Response: {response.text}")
|
||||
return False
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred while calling the /insert API: {e}")
|
||||
return False
|
||||
|
||||
def summarize_with_context(query, model="DeepSeek-V3-0324"):
|
||||
"""Creates a query embedding, searches GitPasha, and summarizes."""
|
||||
print(f"Creating embedding for query: '{query}'")
|
||||
try:
|
||||
query_vector = embeddings.embed_query(query)
|
||||
except Exception as e:
|
||||
print(f"Failed to create query embedding: {e}")
|
||||
return None
|
||||
|
||||
print("Retrieving relevant context from GitPasha...")
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{GITPASHA_HOST}/search",
|
||||
json={"vector": query_vector, "k": 4},
|
||||
headers={"Content-Type": "application/json"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
print("→ POST /search:", response.status_code)
|
||||
search_results = response.json()
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"An error occurred while calling the /search API: {e}")
|
||||
return None
|
||||
|
||||
if not search_results or 'results' not in search_results:
|
||||
print("No relevant context found.")
|
||||
return "Could not find any relevant context to generate a summary."
|
||||
|
||||
context = "\n\n".join([result['payload']['text_chunk'] for result in search_results['results']])
|
||||
|
||||
print("Generating final summary...")
|
||||
try:
|
||||
response = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant that summarizes documents based on the provided context."},
|
||||
{"role": "user", "content": f"Based on the following context, please answer the question.\n\nContext:\n{context}\n\nQuestion: {query}"}
|
||||
]
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
except Exception as e:
|
||||
print(f"An error occurred during final summarization: {e}")
|
||||
return None
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Summarize a PDF using a remote Serverless Vector Store + AI.")
|
||||
parser.add_argument("pdf_path", help="Path to the PDF file.")
|
||||
parser.add_argument("--query", help="Custom question about the PDF.", default="Summarize the key points of this document.")
|
||||
args = parser.parse_args()
|
||||
|
||||
# 1. Extract text from the PDF
|
||||
pdf_text = extract_text_from_pdf(args.pdf_path)
|
||||
if not pdf_text:
|
||||
print("Aborting due to empty text from PDF.")
|
||||
return
|
||||
|
||||
# 2. Store the text chunks and their embeddings
|
||||
if not store_text_chunks(pdf_text):
|
||||
print("Aborting due to failure in storing document.")
|
||||
return
|
||||
|
||||
# 3. Query, retrieve context, and summarize
|
||||
summary = summarize_with_context(args.query)
|
||||
if summary:
|
||||
print("\n--- Contextual Summary ---")
|
||||
print(summary)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
openai
|
||||
PyPDF2
|
||||
python-dotenv
|
||||
langchain
|
||||
tiktoken
|
||||
requests
|
ثنائية
uploads/test1.pdf
Normal file
ثنائية
uploads/test1.pdf
Normal file
ملف ثنائي غير معروض.
المرجع في مشكلة جديدة
حظر مستخدم